

Technical Report 2

RIVER VUE APARTMENTS, PITTSBURGH, PA

October 19, 2011 Authored by: Laura C. Pica Adviser: Stephen Treado

Technical Report 2

Building and Plant Energy & Emissions Analysis Table of Contents

Executive Summary

Buildings are one of the leading users of energy in the United States because of their large mechanical systems and lighting loads. In an age when natural resources are becoming scarce and energy consumption is of international concern, building energy modeling and analysis is a critical component of HVAC system design. Developing simple methods for energy modeling can be helpful in learning how to become a smart mechanical systems designer.

Technical report 2 serves as a summary of energy modeling research and emissions analysis performed on River Vue Apartments. Once Trane TRACE 700 was used to create a simple model of the apartment units, it was found that heating loads dominate the yearly usage of energy and the most influential components of this load is due to mechanical equipment operation, lighting, and people. Ventilation is low compared to supply and exhaust airflows and this could be due to be the addition of operable windows in the apartment units. The design engineer may have assumed occupants would control ventilation individually and therefore place more emphasis on supplying constant volume air to the spaces. Detailed explanation of the modeling process and assumptions made throughout the project follows in this report.

Trane TRACE 700 was also used to investigate monthly and annual electrical, natural gas, and water consumption to understand how efficiently the building operates at normal conditions as well as critical peak operation. As expected, the highest cooling load occurred in July, where hot temperatures and high solar gains exist, and the highest heating load occurred during January and February, where there is lower solar gain and cold outdoor air temperatures. Occupancy schedules were influential in the daily energy usage since River Vue Apartments is a residential facility.

Emissions data was gathered through the energy model as well and it was found that the building will produce roughly 18 million pounds of carbon dioxide annually.

Of course, user experience was a large factor in the model and its outcome. Results may vary if another energy modeling software program is implemented or if time allowed for more detailed model templates.

Introduction

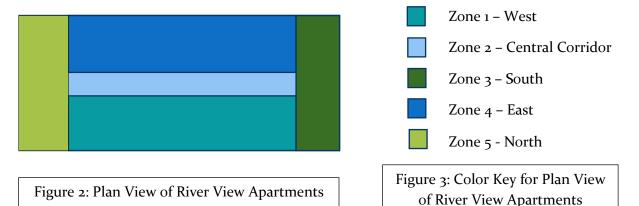
The goal of this technical report is to understand the energy consumption and building loads for River Vue Apartments using an energy simulation program. Trane TRACE was used to model the apartment complex, assign occupancy schedules, room conditions, and create a report documenting the model's expected loads. Building operating costs and equipment operation was further researched, too.

River Vue Apartments, located in Pittsburgh, Pennsylvania, is a renovation project to convert the Old State Office Building into downtown apartment living. During the summer of 2011 the building's interior was completely stripped to allow for new mechanical, electrical, fire protection and other systems to be installed in following months, with an expected substantial completion date in the spring of 2012. It has repetitive residential units on all floors, retail and café area on the first floor, two levels of valet parking for future residents, and bi-level apartment units with balconies on the 15th and 16th floors.

Figure 1 Exterior View of River Vue Apartments

Mechanical System Overview

Due to the simplicity of the complex, River Vue Apartments is served by only one 26,300 CFM air handling unit with an energy recovery wheel located on the roof serving two supply risers and two exhaust risers located in the north-east corner of the building. Two 200 GPM boilers and a 1024 GPM plate heat exchanger are located in the basement mechanical space and a 350 ton cooling tower located behind stainless steel curved panels on the roof serve the plumbing system's risers. The building can be divided into several simple zones requiring ventilation and conditioned air from the air handling unit, including residential apartment units, corridors, lobby/retail space, and the parking garage. Much of the building's ventilation will be provided by operable windows in the façade. Fire protection will be supplied through sprinklers on each floor, which will be new to the building in the current renovation project.


Design Load Estimation

"As-Designed" Document Data:

Contract documents for River Vue Apartments provide a mechanical equipment schedule with energy consumption and equipment sizes as follows. The single make up air handling unit with enthalpy wheel calls for 864,000 BTU/hr which equates to 7,569 MBTU annually. Supply fans provide nearly 72,000 CFM and exhaust fans remove approximately 108,000 CFM for ventilation. The mechanical design data from the River Vue Apartment's mechanical engineer was not available for comparison. No 3-D model or energy model was created for this project by the design team.

Space Zoning

In order to effectively model the annual energy consumption for River Vue Apartments in Pittsburgh, Pennsylvania, Trane TRACE 700, Version 6.2 was used. Peak design heating and cooling loads for the system determined throughout the analysis can be used as a benchmark for potential redesign of the system. The building was divided into five zones per floor, as seen below, to achieve more accurate modeling of solar gains on exterior walls and internal gains.

The division of zones shown above allows for simple block load analysis to be performed. River Vue Apartments is rotated approximately twenty degrees off true north on its building site. This rotation influences the solar gain seen by each zone and was taken into account in the Trane TRACE model for accuracy.

NOTE: Personal experience with the Trane TRACE 700 program and previous energy analysis projects were factors in the outcome of the energy model's results.

Load Sources

Much of the load for this building comes from its occupants, ventilation, infiltration, lighting and mechanical equipment as well as significant solar gains. Tenants will likely be using the most energy early in the morning and later in the evening during dinner hour since this is a residential facility. The mechanical equipment like boilers, pumps, air handling unit and the generator will be in constant use whereas lighting loads and solar gains will vary throughout the day and year.

Energy Modeling Assumptions

Block load analysis was used for this energy modeling exercise so that calculations could be simplified and the Trane TRACE model had a manageable file size. Time did not allow for a fully expanded energy simulation however, the model's results are accurate within reason for the assumptions listed later in this report.

Schedules used for the energy model were selected from presets available in the Trane TRACE program because they serve as sufficient estimates for occupancy and energy consumption. The schedules define what percentage of a certain energy load is being utilized throughout different times of the day and are listed in Appendix B for reference.

Templates were then created using the Trane TRACE program for each typical space to describe square footage, occupancy, work stations, lighting, and other miscellaneous internal loads. Additionally, templates were established to represent River Vue Apartment's thermostat settings, construction materials, and heat transfer rates. Examples of these templates are provided in Appendix C.

After rooms and zones were established, a system with a cooling tower and water pump as well as a heat exchanger and gas-fired two boilers was created to simulate the system used in River Vue Apartments. Utility rates were applied to fuel consumption in order to identify monthly operational costs.

Construction:

Building construction materials were simplified to include six inch normal weight concrete slab floors, typical exterior metal panel walls and framed interior walls with two inches of insulation. Glazing was assumed to be single-pane bronze windows. These assumptions are close to actual conditions in the contract documentation and serve as helpful simplifications for the modeling process.

Weather Data

Design day weather conditions for Pennsylvania provided by the ASHRAE Handbook of Fundamentals 2009 are as follows:

• Winter Design Dry Bulb Temperature: 61 degrees F (15 degrees Celsius)

- Summer Design Dry Bulb Coincident Temperature: 88 degrees F (31 degrees Celsius)
- Summer Design Wet Bulb Temperature: 86 degrees F (30 degrees Celsius)
- Mean Daily Range of Temperatures: 11 degrees
- Typical Prevailing Winds: West at 6 mph

Indoor and outdoor air conditions for Pittsburgh, Pennsylvania were used in the Trane TRACE model.

Energy Modeling Results& Analysis

As seen in the table below, the energy model from Trane TRACE 700 predicts over 1.4 million cfm of airflow for heating and cooling for River Vue Apartments. This equates to roughly 4.79 cfm per square foot of the building. It can also be seen that the majority of the airflow is dedicated to cooling, heating, and return air whereas outside air and exhaust air are at a minimum. This could pose a potential for the development of poor indoor air quality within the apartment units and could be a basis for a redesign.

Design Airflow								
OA Cooling Heating Return Exhaust								
cfm	186,807	1,412,883	1,412,883	1,439,883	213,837			
% TOTAL	4%	30%	30%	31%	5%			
cfm/ft^2	0.63	4.79	4.79	4.88	0.72			

Table 1: Design Airflow Rates

Average air changes for typical spaces within River Vue Apartments were calculated during the energy simulation and tabulated in the table below. Rooms with highest ventilation include apartment units as well as the fitness room. These results are expected since these spaces will endure high sensible loads from running equipment and high latent loads from occupants.

Air Changes Per Hour					
Apartment Unit North	38				
Apartment Unit South	31				
Apartment Unit East	31				
Apartment Unit West	39				
Corridor	25				
Mechanical Room	20				
Lobby	18				
Fitness Room	42				

Table 2: Air Changes Per Hour

	Cooling	Loads	Heating Loads
	Sensible	Latent	
BTU/h	59,001	54,985	18,593,418
TOTAL (MBh)	113.9	86	18593.418
TOTAL (MBh)	113.9	86	18593.418

Table 3: Loads

Heating loads for the building dominate the system according to this energy model. Most times during the year, Pittsburgh's climate is cool and cloudy so it makes sense that more heating is required than cooling overall.

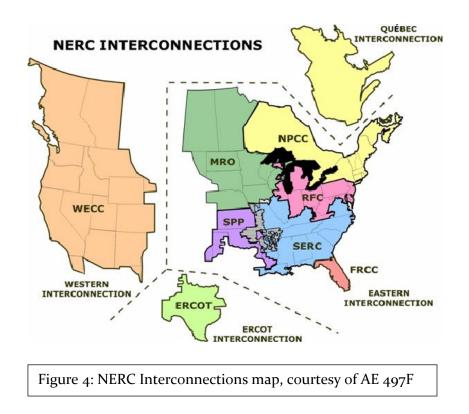
One final analysis was done to examine how the Trane TRACE model compares to what ASHRAE prescribes for typical high rise apartment complexes using the 2005 ASHRAE Pocket Guide for Air Conditioning, Heating, Ventilation, and Refrigeration. The guide gives high, average, and low expected values for various design categories as seen in the table below. Corresponding values from the Trane TRACE model were compared to the average values for each category to understand how the model represents operation.

High	Rise Apartı	ment	River Vue Apartments	Reasonable?
оссир	ancy sqft/p	person	occupancy sqft/person	
Lo	Av	Hi	Model	
325	175	100	200	Yes
ligl	hts watts/s	qft	lights watts/sqft	
Lo	Av	Hi	Model	
1	2	4	1	Yes
refrig	eration sqf	t/ton	refrigeration sqft/ton	
Lo	Av	Hi	Model	
450	400	350	90	No
supply air	rate (east-	-south-west) cfm/sqft	supply air rate (east-south-west) cf	m/sqft
Lo	Av	Hi	Model	
0.8	1.2	1.7	0.63	Yes
supply air	rate (north) cfm/sqft	supply air rate (north) cfm/sqft	
Lo	Av	Hi	Model	
0.5	0.8	1.3	0.63	Yes

Table 4: System Comparison

It can be seen that assumptions used for the model were almost always conservative compared to typical design values from ASHRAE for high rise apartment complexes. However, most values seen in the model are within reason given the knowledge that many simplifications to space loads, construction materials, occupancy and equipment schedules were made in the modeling process.

Refrigeration is the one category that stands out as being unacceptable and this is most likely due to incorrect system modeling. The cooling system modeled in Trane TRACE consisted of a cooling tower and two circulating pumps because River Vue Apartments uses circulated loops of water and individual heat pump units in each apartment for heating and cooling of the spaces instead of a refrigeration loop. Understanding this data can explain why the model displays lower than expected outputs.


Also note that water consumption from bathroom and kitchen appliances was not figured into the model. All interior spaces were grouped to allow for simple zoning of the building

Energy Model Created by Design Engineer

No energy model was created for this project by the original design team therefore a comparison of model data and ASHRAE design data was made (as described above). River Vue Apartments is an accelerated project with a short schedule and maximum price budget so detailed energy modeling was not of high priority. Choices for schedules and design conditions were consciously made throughout the Trane TRACE energy modeling processto produce the best model possible.

Annual Energy Consumption

Annual energy consumption is a hot topic in today's world, where natural resources are becoming scarce and electricity generation and distribution is increasingly expensive. The United States has several different regions within electricity is generated and distributed. According to the map below, Pittsburgh, Pennsylvania is located in the RFC (Eastern) region.

This region is typically known for producing most of its electricity by burning bituminous and subbituminous coal, since it is the natural resource most prevalent in that region. Mechanical equipment like the generator and boilers in this building also consume natural gas for operation.

The energy model created in Trane TRACE was used to estimate the monthly and annual utility usage for River Vue Apartments, based on the cooling and heating systems originally designed for the building. Results say that there will be an annual electric consumption of almost 6 million kWh (combination of on-peak and off-peak usage). The biggest contributor to this usage is the heating and cooling from the mechanical system.

Fuel costs

Annual fuel costs were determined using rate information provided by the service companies' websites as follows:

Electric Company: Duquesne Light

- Coal fired electricity plant
- 8.96 cents per kWh for residential heating service

Natural Gas Company: Columbia Gas of Ohio

- 6.22 cents per hundred cubic feet total rate which breaks down as:
- 5.64 cents per ccf for standard service *This breaks down as:*
 - 2.82 cents per ccf for gross receipts tax
 - 2.89 cents per ccf for transportation cost

Water: Pennsylvania American Water

- \$13/month meter fee
- 76.56 cents for the first 16,000 gallons/month in a commercial building
- 58.69 cents for excess usage

Fuel rates from the provider companies listed above were implemented to calculate the total fuel cost for operation of River Vue Apartments as seen below:

	Mor	nthly Utility Usage	
Month	Electric (kW)	Gas (therms)	Water (gal)
1	722	36776	16
2	717	35939	13
3	722	26060	17
4	849	15040	104
5	839	4558	263
6	845	1307	411
7	846	46	509
8	844	1717	350
9	839	4782	238
10	842	17417	96
11	749	20845	83
12	726	33222	17
TOTAL	9540	197709	2117
Cost	\$ 849.06	\$ 148,281.75	\$ 1,633.78
TOTAL			\$ 150,764.59

Table 5: Monthly Utility Usage

It can be seen that the total cost of fuel is \$150,765, which equates to about 56 cents per square foot overall. Note that this cost reflects only the operation of the mechanical equipment and lighting. Appliances and other plug loads were not accounted for because they vary for each occupant. These utility bills will likely be paid for directly by building occupants through their apartment rental fees.

Utility usage per month was graphed to examine which months would see expected peak consumption annually by tenants. High electric and water bills should be expected during the summer months where high natural gas bills should be expected during winter months. This data is expected based on real world experience.

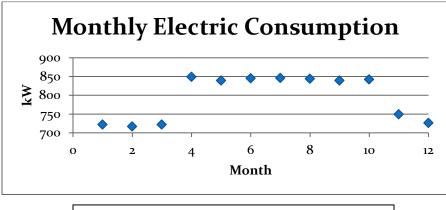
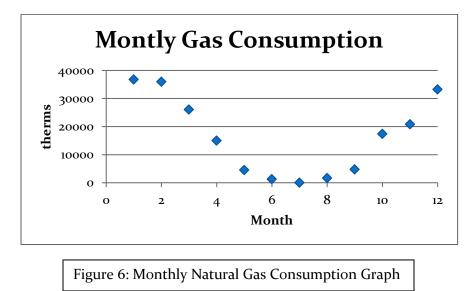



Figure 5: Monthly Electric Consumption Graph

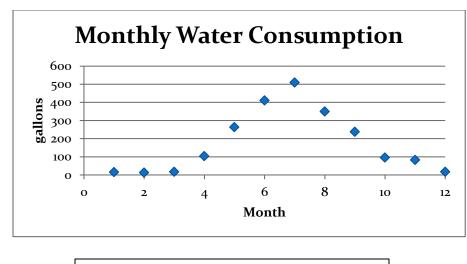


Figure 7: Monthly Water Consumption Graph

Although River Vue Apartments has small appliances like dishwashers and stovetops in each apartment unit, electric, natural gas, and water consumption occurs in bulk through the mechanical equipment. Analysis of air and water flow rates as well as equipment efficiency was done to realize the impact that equipment has on the annual operation of the facility.

Air/water flow rates

The mechanical equipment schedule in the contract documents was used to assess the capacity and flow rates of all equipment. The detailed breakdown is provided in Appendix B, but a summary is provided in the table below. It can be seen that the total BTU/h provided by the existing air handling unit does not meet the demand predicted by the Trane TRACE energy model. This difference could be due to simplifications made in the modeling process; however, it does pose an opportunity for redesign of the air handling unit.

	BTU/hr	Watts	CFM	RPM	GPM	BTU	tons
TOTAL	1,053,600	56175	179750	22604	6162	400000	350
		Table 6: Sum	mary of Equi	oacities			

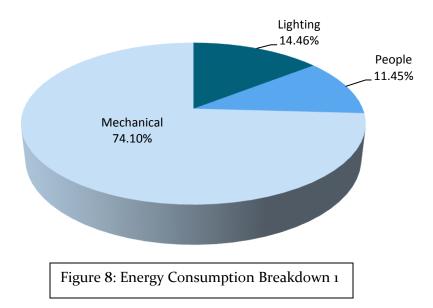
Equipment performance data

Equipment efficiencies were found in contract documents during research for Technical Report 1. As previously mentioned, the equipment efficiencies all comply with ASHRAE standards. Table 7 acts as a summary of those findings.

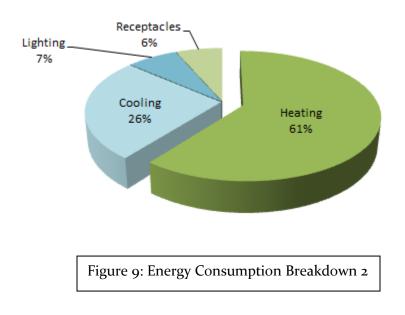
Equipment	Size	Specified Equipment Efficiency
Make Up Air	864,000	10 EER
Handling Unit	BTU/h	
Heat Pump A/C- 100	73,000 BTU/h	
Heat Pump A/C- 103	5,000 BTU/h	
Heat Pump A/C- 223	12,900 BTU/h	
Heat Pump A/C- 227	11,600 BTU/h	13.5 EER, 4.7 COP
Heat Pump A/C-1	8,800 BTU/h	
Heat Pump A/C-2	1,900 BTU/h	
Heat Pump A/C-3	18,100 BTU/h	
Heat Pump A/C-4	23 <i>,</i> 600 BTU/h	
Heat Pump A/C-5	34,700 BTU/h	
Electric Unit	375-18,700 W	3.5
Heaters		
Boilers	2,000,000 BTU input	91%
Axial Propeller Cooling Tower	350 tons	51.2

Table 7: Equipment Efficiencies

Knowing that the required airflow predicted by the energy model and current design do not match, a larger air handling unit could be selected with the same or better efficiency as listed above.

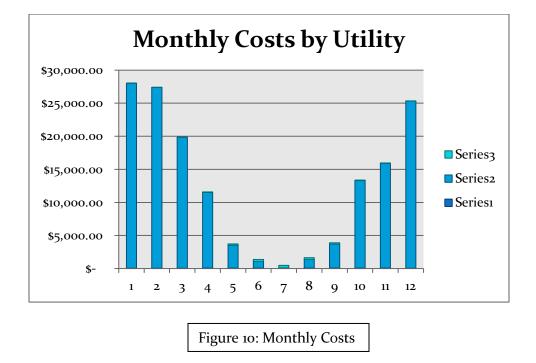

Operating Costs

Comparison to Utility Bills


No operational data or current utility bills were available for River Vue Apartments since it is a renovation project to convert an office facility to a residential apartment complex. The costs associated with a commercial office building do not correspond to those of a residential facility since the building function is different, therefore old operational data cannot be used. Since the project has an initial substantial completion date of April 2012, operational data may become available later in the development of this senior thesis. If this is the case, data will be provided at that time as a supplement to this report.

Energy Breakdowns

The annual energy usage for River Vue Apartments was divided into several categories to understand the usage of building subsystems like mechanical equipment, lighting, and people loads. As seen by the chart below, most energy is used in heating, cooling, and ventilating the apartment units. The second largest load on the spaces comes from lighting, as expected.



Knowing that the majority of electricity used by River Vue Apartments is consumed by the mechanical and electrical systems, the annual electric consumption can be broken down further into subcategories to understand which building systems consume the most energy. As expected from the energy model, the heating dominates the pie chart below, followed by cooling and lighting.

Breakdown of Annual costs

Monthly natural gas, water and electricity usage for River Vue Apartments was plotted together to understand where annual costs would be at a maximum, minimum, and what the average monthly cost would be. As seen in the figure below, the highest cost of operation occurs during January, where natural gas consumption is elevated and the lowest cost occurs in July, where natural gas and water consumption are minimized. The average monthly cost is around \$12,700 but it is obvious from the graph below that there are fluctuations each month. It is interesting to note that electric consumption is fairly consistent throughout the year whereas natural gas and water usage change rapidly.

Annual Emissions Footprint

Emissions from River Vue Apartments were calculated with the Trane TRACE energy model as follows:

Environmental Impact Analysis				
CO2	18,167,650	lbm/yr		
SO2	140,461	gm/yr		
NOX	28,223	gm/yr		

Table 8: Emissions

It is important to consider emissions today with concerns about the longevity and effectiveness of the Earth's ozone. The two boilers in River Vue Apartments burn natural gas and, when combined with the other mechanical equipment throughout the building, produce over 18 million pounds of carbon dioxide annually as seen in Table 8. From the energy model it is known that this equipment burns nearly 400,000 cubic feet of natural gas each year.

This data seems high compared to a typical commercial boiler, which produces around 1.23 million pounds of carbon dioxide for every 1000 cubic feet of natural gas used annually, according to emissions data from the National Renewable Energy Laboratory's 2007 report on energy and emissions.

Summary of Analyses

Energy and Cost Analysis

The energy model created with Trane TRACE 700 used assumptions and simplifications in order to make the process run quickly, however, the data received from the model is within reason for a high-rise residential apartment building like River Vue Apartments. As expected, most of the load comes from heating and cooling the apartment units as well as supplying power for lighting. Occupants can expect to see high electric and natural gas bills during winter months since peak heating load occurs then. If time allowed, ASHRAE design standards for a high rise apartment building could have been implemented in the Trane TRACE model to create more accurate load calculations.

Suggested Areas for Improvement

After reviewing the model's estimations for annual energy usage and operational costs, several ideas for improvement were generated:

- 1. Change schedules for lighting and mechanical system operation to operate off peak times by potentially using thermal storage or thermal mass
- 2. Design air handling unit to operate at peak efficiency more often so that it consumes less energy
- 3. Implement higher efficiency lighting fixtures to reduce lighting load

Further consideration for improvements will be considered in the development of a redesign proposal as well as breadth studies.

Appendix A –ASHRAE Data

2005 ASHRAE Handbook - Fundamentals (IP)

© 2005 ASHRAE, Inc.

Design conditions for PHILADELPHIA NE PHILADELP, PA, US	A
---	---

Station Info	ormation														
Itation nam	10			WMO#	Let	Long	Bev	StaP	Hours +/- UTC	Time zone code	Period]			
a				1b	fe	1d	10	11	19	fh	11	1			
HILADE	ELPHIA NE	PHILAD	ELP	724085	40.08N	75.02W	98	14.644	-5.00	NAE	8201				
innual Hea	ating and Hu	midificatio	n Design Co	onditions											
Coldest	Heatin	g DB		Hur 99.6%	nidification D	P/MCDB and	1 HR 99%			Coldest mon 4%		B %		RFCWD 6% DB	[
month	99.6%	90%	DP	HR	MCDB	DP	HR	MCDB	ws	MCDB	WS	MCDB	MCWS	PCWD	t
2	38	30	40	40	40	49	40	4/	50	50	50	50	6a 40.4	65	
1	11.3 oling, Dehur	15.7	-3.0	4.7	13.6	1.2	5.9	18.0	24.8	33.1	23.1	31.5	10.1	300	
	Hotest		ens Ensie		BMCWB					Eveneration	n WB/MCDB			MONR	PCWD
Hottest month	month		6%	1	%		%		4%	1	*	2	% 	to 0.4	% DB
7	DB range 8	DB 9e	MCWB 95	DB \$c	MCWB 9d	DB \$e	MCWB 9f	10e	10b	WB 10c	10d	WB fGe	MCDB 107	MCWS 11e	PCWE 115
7	19.0	93.2	75.8	90.4	74.6	88.0	73.5	79.0	88.7	77.1	87.0	75.6	84.4	9.8	300
			Dehumidific		CDB and HR						Enthelp	WCDB			[
DP	0.4% HR	MCDB	DP	1% HR	MCOB	DP	2% HR	MCDB	Enth	4% MCDB	Enth	MCDB	Enth	MCDB	ł
120	125	120	124	120	129	12g	125	121	13a	135	13e	138	130	13/	
76.1	136.8	83.5	74.2	128.3	81.6	72.8	122.1	80.3	34.6	88.5	32.7	87.1	31.3	84.5	
xtreme Ar	nnual Desig	h Condition		1		1.00									
	reme Annual		Extreme Max		ean		deviation		years	n=10	years		years		years
1% 14e	2.5% 14b	5% 14c	WB 15	Max 16e	Min 16b	Max 16c	Min 16d	Max 17a	Min 17b	Max 17c	Min 17d	Max 170	Min 177	Max 17g	Min 17h
21.0	18.7	17.3	88.7	97.7	4.7	2.7	6.5	39.6	0.0	101.2	-3.8	102.7	-7.4	104.7	-12.1
ionthly De	esign Dry Bu	ib and Mea	n Coincide	nt Wet Buib	Temperatu	res									
	يل	n	F	eb	N	far	A	pr	N	Awy	J	un	[
76	DB 18a	MCWB 18b	DB 18c	MCWB 18d	DB 18e	MCWB 18/	DB fâg	MCWB 18h	DB 18/	MCWB 18j	DB 18k	MCWB f8f	I		
0.4%	63.8	59.3	66.1	56.2	78.8	64.4	85.5	66.0	90.6	71.6	94.4	74.8			
1%	61.2	57.8	62.8	54.5	74.2	61.5	80.7	64.6	88.4	70.9	92.7	74.4			
2%	57.6	54.0	59.2	52.5	69.8	58.4	76.4	62.0	86.2	69.9	90.7	74.0			
%	DB	MCWB	DB	MCWB	CB	ep MCWB	DB	MCWB	DB	MCWB	DB	Aec MCWB	ł		
	fām	180	180	fāp	18g	18r	182	181	18u	18v	fðw	18x			
0.4% 1%	97.8 96.3	78.4 77.7	95.3 92.9	76.8 76.5	91.1 88.4	74.8 73.2	82.0 80.2	68.3 67.8	73.7 70.9	62.5 62.3	66.3 63.7	59.8 57.6			
2%	94.3	76.8	90.9	75.5	85.9	71.8	77.4	66.8	68.3	60.8	61.2	55.5			
ionthly De	esign Wet Be	ilb and Me	an Coincide	nt Dry Bulb	Temperatu	res									
76	WB JA	MCDB	WS F	eb MCDB	WB	MCD6	WB	pr MCDB	WB	MCDB	WB J	un MCDB	F		
~	19a	TSD	19c	194	190	19/	19g	194	19	185	19k	191	L		
0.4%	61.3	63.2	59.3	62.6	65.8	76.7	68.5	80.6	75.7	86.3	79.8	86.7			
1% 2%	58.2 54.8	60.5 57.4	57.1 54.0	61.1 57.1	63.2 60.5	72.2 66.9	66.6 64.6	77.2 74.1	73.9 72.1	84.3 82.6	77.8 76.4	88.4 87.1			
				ug		ep		et		iav		ac .	r		
%	WB	MCDB 190	WB 190	MCDB	WB 19q	MCD6	WB 191	MCDB 191	WB 194	MCDB 19v	WB 19w	MCDB 18v	t		
0.4%	82.9	90.3	81.5	89.0	77.6	85.3	72.0	77.5	66.5	70.6	61.8	65.1			
1%	80.9	90.7	79.7	88.3	76.3	83.9	70.5	75.9	64.8	68.2	59.4	62.3			
2%	79.5	90.3	78.1	87.4	75.2	82.4	69.2	74.5	63.2	66.1	57.2	60.1			
	ean Daity Te														
Jan 20e	Feb 205	Mar 20c	Apr 20d	May 20e	Jun 207	3ul 20g	Aug 20h	Sep 20/	0et 20/	Nov 20k	Dec 20V	J			
	16.2	18.2	20.0	20.4	20.2	19.0	18.4	18.9	20.0	17.9	15.2				
15.0															
										E com m	Longitude, 1				
15.0 MMO# Ekv	World Meter Bevation, ft		ganization n	rumber	Lat StdP	Latitude, * Standard pr	essure at st	ation elevatio	m, pei	Long	congesse,				
VMO#		perature, "		umber			imperature,		m, pai	WB HR	Wet built te	mperature, "		r ib of dry air	

Appendix B – Schedules

Lighting:

Start Time	End Time	Percentage
Midnight	6 am	5
6 am	7 am	50
7 am	9 am	100
9 am	5 pm	50
5 pm	11 pm	80
11 pm	Midnight	50

Base Utilities:

Start Time	End Time	Percentage		
Midnight	9 am	70		
9 am	10 am	50		
10 am	4 pm	30		
4 pm	5 pm	50		
5 pm	Midnight	70		

Infiltration:

Start Time	End Time	Percentage	
Midnight	10 am	100	
10 am	6 pm	50	
6 pm	Midnight	100	

Occupancy:

Start Time	End Time	Percentage
Midnight	7 am	90

7 am	9 am	50	
9 am	5 pm	30	
5 pm	6 pm	50	
6 pm	Midnight	90	

Ventilation:

Start Time	End Time	Percentage
Midnight	Midnight	100

Mechanical Equipment Schedule

Mark	Equipment	BTU/hr	CFM	RPM	GPM
ERU-1	Make Up Air	864,000	26,300		
	Handling Unit				
A/C-100	Heat Pump	73,000			
A/C-103	Heat Pump	5,000			
A/C-223	Heat Pump	12,900			
A/C-227	Heat Pump	11,600			
A/C-1	Heat Pump	8,800			
A/C-2	Heat Pump	1,900			
A/C-3	Heat Pump	18,100			
A/C-4	Heat Pump	23,600			
A/C-5	Heat Pump	34,700			
HE-1	Heat Exchanger				1024
BOILER-1	Boiler			1750	
BOILER-2	Boiler			1750	
СТ	Axial Propeller Cooling Tower				
SF-A	Supply Fan		13800	832	
SF-B	Supply Fan		11,000	776	
EF-B19-A	Exhaust Fan		15000	481	
EF-B19-B	Exhaust Fan		15000	481	
EF-114-A	Exhaust Fan		15000	481	
EF-114-B	Exhaust Fan		15000	481	
EF-1700-A	Exhaust Fan		4600	887	
EF-1700-B	Exhaust Fan		3000	1150	

EF-B20	Exhaust Fan		10000	792	
EF-B21	Exhaust Fan		30000	713	
EF-1600-A	Exhaust Fan		150	1300	
EF-1600-B	Exhaust Fan		200	1400	
SF-1600-A	Supply Fan		16000	1160	
SF-1600-B	Supply Fan		31000	1170	
А	Electric Heater				
В	Electric Heater				
С	Electric Heater				
D	Electric Heater				
E	Electric Heater				
F	Electric Heater				
G	Electric Heater				
Н	Electric Heater				
CWP-1	Condensing Water Pump			1750	1024
CWP-2	Condensing Water Pump			1750	1024
LWP-1	Loop Water Pump			1750	1030
LWP-2	Loop Water Pump			1750	1030
AS-1	Air Separator				1030
	TOTAL	1,053,600	179750	22604	6162

Appendix C - Trane TRACE Templates

Typical Internal Load Template for Apartment Units

Internal Load	Template	s - Project						23
Alternative	Alterna	tive 1		•				Apply
Description	dwelling	g units		-				Close
People Type	Hotel/Mot	tel Room					•	New
Density	200	sq ft/person	•	Schedule	Cooling Or	ly (Design)	-	Сору
Sensible	245 E	Btu/h		Latent	105 B	tu/h		Delete
Workstations Density								Add Global
Density	2	workstations	•					
Lighting								
Туре	Recessed	fluorescent, not ver	nted, 50	% load to sp	ace		-	
Heat gain	0.3	W/sq.ft	-	Schedule	Cooling Or	ly (Design)	•	
Miscellaneou								
Туре	Std Office	Equipment					<u> </u>	
Energy	0.5	W/sq.ft	•	Schedule	Cooling Or	ly (Design)	•	
Energy meter	Electricity		•					
<u>I</u> nternal	Load	Airflow		<u>I</u> herm	ostat	<u>C</u> onstruction	ı	<u>R</u> oom

Typical Airflow Template for Building

Airflow Templat	tes - Proj	ect						— ×
Alternative	Alternati	ve 1		•				Apply
Description	1			-				Close
Main supply Cooling Heating Ventilation Apply ASHR	AE Std62	To be calculated To be calculated	• • •	Auxiliary supp Cooling Heating Std 62.1-2004 Clq Ez	/2007		• • 100 %	New Copy Delete
Type Peop-based Area-based	Default 9	Std62 cfm/person cfm/sg ft		Htg Ez C	eiling ht Iefault b	g supply, floor return 💌	100 % %	Add Global
Schedule	Vent - H	igh rise motel-hotel	•	Room exhau Rate		air changes/hr	- -	
Туре	Neutral,	Average Const.	•	Schedule	Vent -	High rise motel-hotel	•	
Cooling Heating Schedule	0.6 0.6 Infil - Apa	air changes/hr air changes/hr artment Complex	•	VAV minimun Rate Schedule Type			• • •	
Internal Loa	ad	Airflow		<u>T</u> hermosta	t	<u>C</u> onstruction		<u>R</u> oom

Typical Thermostat Settings for Building

Thermostat Templa	tes - Project			×
Alternative Alternative	ernative 1	-		Apply
Description the	rmostat settings	-		Close
Thermostat settings.				
Cooling dry bulb	78 °F			New
Heating dry bulb				Сору
Relative humidity				Delete
Cooling driftpoint	81 °F			Add Global
Heating driftpoin	64 °F			
Cooling schedule	None		•	
Heating schedul	e None		•	
Sensor Locations				
Thermostat	Room		•	
CO2 sensor	None		•	
Humidity				
Moisture capacit	ance Medium		~	
Humidistat locati	on Room		•	
		_		
Internal Load	Airflow	<u> </u>	<u>Construction</u>	<u>R</u> oom

Typical Construction Template for Building

Construction	n Template	s - Project					23
Alternative	Alterna	tive 1		-			Apply
Description	Default			•			Close
Construction	ì				U-factor Btu/h•ft ^{e,} *F		New
Slab	6" HW Cor	ncrete		-	0.45		Copy
Roof	6" HW Cor	nc, 2'' Ins		•	0.117421		Delete
Wall	Metal, 3" In	าร		•	0.064		
Partition	4" HW Cor	nc		-	0.587084		Add Global
Glass type Window					U-factor Btu/h·ft ^{e,} *F	Shading coeff	
	3mm Sgl Bi			_		0.95	
Skylight	Single Clea			<u> </u>	0.95		
Door	Standard D)oor		_	0.2	0	
Height Wall Firtofir Plenum	10 12 2	ft ft ft	und	wall area to erfloor plenum om type	Conditioned	%	
Internal	Load	Ai	irflow	<u>T</u> hermo	ostat	<u>Construction</u>	Boom

	te jor Apartment (Jnit		
Room Templates	s - Project			
Alternative	Alternative 1	•		Apply
Description	dwelling units	-		Close
				New
Templates				
Internal load	dwelling units	-		Сору
Airflow	1	▼		Delete
Thermostat	thermostat settings	▼		Add Glob
Construction	Default	-		
Internal Load	<u>A</u> irflow	<u>T</u> hermostat	<u>C</u> onstruction	<u>R</u> oom

nt I Init Ту

Typical Room Templates for Apartment Unit

💭 Create Rooms - Single Worksheet					
Alternative 1					Apply
Room description units 2nd floor west		•			<u>C</u> lose
Templates	Length	Width			
Room dwelling units	Floor 115	ft 26 ft			<u>N</u> ew Room
Internal dwelling units	Roof 💿 🛛	ft O ft			Сору
Airflow 1	C Equals flo	10			Delete
Tstat thermostat settings 💌	5.7-11				
Constr Default 🗨	Wall Description Length (ft)	Height (ft) Direction	% Glass or Qty Len	gth (ft) Height (ft) \	Window
	Wall · 1 115	10 70			
	0	10 0		0	
	0	10 0	0 0 0	0	
	Internal loads		Airflows		
	People 150	People 💌	Peop-based	11 cfm/person	-
	Lighting 0.33	W/sq ft 💌	Area-based	0.6 cfm/sq.ft	-
	Misc loads 0.5	W/sq ft 🗨	VAV minimum	% Clg Airflow	-
Single Sheet Rooms	Roo <u>f</u> s	<u>W</u> alls	Int Loads	Airflows	Partn/Floors

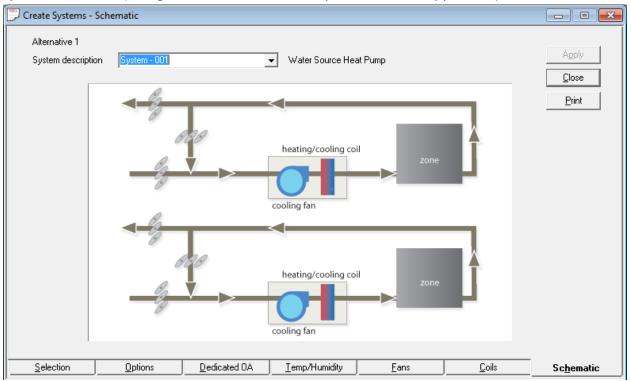
🖓 Create Rooms - Rooms								
Alternative 1								Apply
Room description units 2nd floor west		•	- Desi	gn				<u>C</u> lose
Templates S	ize		C	ooling dry bulb	78	۴F		
Room dwelling units 💽	Length	115 ft	Н	eating dry bulb	75	۴F		<u>N</u> ew Room
Internal dwelling units 💽	Width	26 ft	B	elative humidity	58	%		Сору
Airflow 1 🗾 H	leight		The	rmostat				
Tstat thermostat settings 💌	Floor to floor	12 ft	C	ooling driftpoint	81	۴F		<u>D</u> elete
Constr Default 💌	Plenum	2 ft	Н	eating driftpoint	64	۴F		
	Above ground 🛛	ft	C	ooling schedule	Cstat		-	
Duplicate	Floor multiplier	1	Н	eating schedule	Hstat		-	
	Rooms per zone 🏾	1	Sen	sor Locations				
Room mass/avg time lag	Fime delay based on a	ctual ma: 💌	TI	hermostat	Room		-	
Slab construction type	6" HW Concrete	•	C	02 sensor	None		-	
Room type	Conditioned	•	Hum	idity				
Acoustic ceiling resistance		М	oisture capacitance	Medium	n	-		
Carpeted 🔽 Humidistat location								
Single Sheet Rooms	Roo <u>f</u> s	<u></u>	alls	Int Loads		Airflows	E	artn/Floors

Roof Template for 16th floor Apartment Units

Create Rooms - Roofs					
Alternative 1					Apply
Room description units 16th floor east		•			<u><u>C</u>lose</u>
Templates Roof	f				
Room dwelling units	oof - 1	Tag Roof - 1	Construct 6" HW Conc, 2	2" Ins	✓ <u>N</u> ew Roof
Internal dwelling units		C Equals floor	U-factor 0.11742 B	ltu/h·ft ^{e.} *F	Сору
Airflow 1		Length 135 ft	Pitch 90 d	leg	Delete
Tstat thermostat settings 💌		Width 15 ft	Direction 0 d	leg	
Constr Default 🗨			-		
			Type Single Clear 1/		<u> </u>
		· · · · · · · · · · · · · · · · · · ·		ltu/h·ft ^{e.} *F	
		Width 0 ft	Sh. Coef 0.95		
		Quantity 1	Ld to RA 0 %	6	
	Shading				
	-	Internal None			_
Single Sheet Rooms	Roofs	Walls	Int Loads	Airflows	Partn/Floors
	110018	<u>w</u> ais		<u>0</u> 0%5	

Typical Wall Construction Template

📁 Create R	looms - Walls					
Alternative	:1					Apply
Room des	cription units 16th floo	or east	•			
	,		_			
Templates		Wall				
Room	dwelling units	▼ Wall - 1	Tag Wall - 1 Constru	ct Metal, 3" Ins		✓ <u>N</u> ew Wall
Internal	dwelling units	-	Length 135 ft	U-factor 0.06	4 Btu/h·ft ^{e,} *F	
Airflow	1	•	Height <mark>10</mark> ft	Tilt 0	deg	C <u>o</u> py Wall
Tstat	thermostat settings	•	Grnd reflect 1 multiplier	Direction 250	deg	
Constr	Default	-	Pct wall area to underfloor plenum	%		<u>D</u> elete Wall
		Openings				
		Opening - 1	Tag Opening 1	Window	C Door	New
			🔽 Wall area % Type	3mm Sgl Bronz	e	▼ Opening
			Length 0 ft	, Height 0	ft Quantity 0	Сору
			U-factor 1.051 Btu/h·f8-*F	Sh. Coef 0.84	Ld to RA	Opening %
			Shading	,	,	Dele <u>t</u> e Opening
			Internal None			_
			External Overhang - None			•
			, _			
<u>S</u> ingle S	Sheet <u>R</u> oc	ims Rooj	is Walls	Int Loads	<u>A</u> irflows	Partn/Floors


Internal Load Template for Apartment Units

💭 Create Rooms - Internal	Loads						
Alternative 1							Apply
Room description units 16	th floor east	-]			Ē	Close
Templates			_				
Room dwelling units	▼ People Activ	ity Hotel/Motel Roo	m 🔻	Density 200	sq ft/person	•	
Internal dwelling units		dule Cooling Only (De		• ,		-	
Airflow 1	✓ Sens	ible 245 Btu/h		Latent 105	Btu/h	_	
Tstat thermostat setting	gs 💌 Workstations	,		,			
Constr Default	✓ Dens	ity 2 workst	ations 🔹	[
Lights	Type Recessed	fluorescent, not vente	1.50% load to spa			•	
Ligrits	Heat gain 0.72			ooling Only (Desig	10]	-	
		//sqn		Joining Only (Diesig	9 Y Y	<u> </u>	
Miscellaneous loa	ids						
Misc Load 1	Tag Misc Load	1	Type St	d Office Equipme	nt	•	<u>N</u> ew Load
	Energy 0.5 😽	//sq.ft 📃 💌	Schedule Co	ooling Only (Desig	jn)	•	С <u>о</u> ру
	Energy meter Electricity	•					Delete
						_	Delete
Single Sheet	Rooms Roo	ofs Wa		nt Loads	Airflows	Par	tn/Floors
		<u>10 M</u> c			Amows	<u></u> an	un/1/1001s

Airflow Template for Apartment Units

💭 Create Rooms - Airf	flows									
Alternative 1						Adjacent ai	r transfer fro	m room	Ap	oply
Room description units	s 2nd floor west			• <	<no adjace<="" td=""><td>ent air trans>></td><td></td><td></td><td>- <u>c</u>i</td><td>ose</td></no>	ent air trans>>			- <u>c</u> i	ose
Templates	Ma	ain supply				Au	kiliary supply	·		
Room dwelling unit	ts 💌 🛛	Cooling		To be calculated	-	·	Cooling	To be	calculated	•
Internal dwelling unit	ts 💌	Heating		To be calculated	-	·	Heating	To be	calculated	-
Airflow 1	T	entilation				Sto	62.1-2004/			
Tstat thermostat s	ettings 🚽	Apply ASHRAE S	d62.1-	-2004/2007 Yes	s 🔦	·	Clg Ez C	eiling olg supply, o	ceiling reti 💌 📔	100 %
Constr Default		Type Def	ault St	td62	•	·	Htg Ez 🕻	eiling htg supply, f	loor returi 💌	100 %
Constraint Deraut		Peop-based 11		cfm/person	-	·	Er D	efault based on s	ystem typ 💌	%
	,	Area-based 0.6	_ (ofm/sq.ft		·	DCV Min (DA Intake 🕅	None	-
	:	Schedule Ver	t - Hig	h rise motel-hotel	-	· Ro	om exhaust.			
	Inf	filtration					Rate	0 air cha	inges/hr	•
		Type Neu	itral, A	verage Const.		·	Schedule	Vent - High rise	motel-hotel	-
	1	Cooling 0.6	6	air changes/hr	-		V minimum			
	1	Heating 0.6	6	air changes/hr	-	·	Rate	X Clg /	Airflow	-
	:	Schedule Infil	- Apar	tment Complex	•	·	Schedule	Available (100%)	-
							Туре	Default		-
Single Sheet	Rooms	Roofs		Walls		Int Loads		Airflows	Partn/Flo	

System Schematic (Using Water Source Heat Pumps and an Enthalpy Wheel)

26

System Options Template

💭 Create Systems - C)ptions					
Alternative 1						
System description	System - 001	•	Water Source Heat	Pump		Apply
Evaporative Coolin	g		Economizer			<u>C</u> lose
Туре	None	-	Туре	None	-	Advanced
Direct efficiency	0.6	%	"On" point		*F	Options
Direct coil sched	dule Base Util - Lodgi	ng 🚽	Max outdoor air	100	%	
Indirect efficience	y 0	%	Schedule	Available (100%)	-	
Indirect coil sch	edule Available (100%)	~				
Stage 1 Air-to-Air E	nergy Recovery/Transf	er	Stage 2 Air-to-Air Ei	nergy Recovery/Trans	fer	
Туре	Sensible wheel (parall	el SA temperin 💌	Туре	None (default)	•	
Sup-side deck	Return / outdoor air d	ownstream 💌	Sup-side deck	Ventilation upstream	-	
Exh-side deck	Return air	•	Exh-side deck	Outdoor & room exha	ust mix 👻	
Schedule	Available (100%)	•	Schedule	Available (100%)	~	
	Effectiveness	Options		Effectiveness	Options	
Selection	<u>O</u> ptions	Dedicated OA	<u>I</u> emp/Humidity	<u>F</u> ans	<u>C</u> oils	Sc <u>h</u> ematic

References

- River Vue Apartments Contract Drawings and Specifications
- ANSI/ASHRAE (2007), Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta, GA, 2007.
- ANSI/ASHRAE (2007), Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta, GA, 2007
- ASHRAE (2009), 2009 ASHRAE Handbook of Fundamentals
- http://www.puco.ohio.gov/puco/index.cfm/apples-to-apples/columbia-gas-of-ohioapples-to-apples-chart/
- http://inflationdata.com/Inflation/images/charts/Annual_Inflation/annual_inflation _chart.htm
- "Source Energy and Emission Factors for Energy Use in Buildings." M. Deru and P. Torcellini. National Renewable Energy Laboratory. June 2007.

Acknowledgements

Thank you to the following people:

- Kevin Ludwick, project engineer from Turner Construction Company for providing necessary building data and contract documents.
- My adviser, Stephen Treado, for his help in editing my reports and providing professional consulting
- My friends and family for their continued support throughout my senior year.